Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.10.06.23296657

Résumé

'Coronavirus Disease 2019' (C19) is a respiratory illness caused by 'new Coronavirus' SARS-CoV-2. The C19 pandemic, which engulfed the world in 2021, also caused a national C19 epidemic in Pakistan, who responded with initial forced lockdowns (15-30 March 2020) and a subsequent switch to a smart lockdown strategy, and, by 31 December 2020, Pakistan had managed to limit confirmed cases and case fatalities to 482,506 (456 per 100,000) and 10,176 (4.8 per 100,000). The early switch to a smart lockdown strategy, and successful follow-up move to central coordination and effective communication and enforcement of Standard Operating Procedures, was motivated by a concern over how broad-based forced lockdowns would affect poor households and day-labour. The current study aims to investigate how the national Pakistan C19 epidemic would have unfolded under an uncontrolled baseline scenario and an alternative set of controlled non-pharmaceutical intervention (NPI) policy lockdown scenarios, including health and macroeconomic outcomes. We employ a dynamically-recursive version of the IFPRI Standard Computable General Equilibrium model framework (Lofgren, Lee Harris and Robinson 2002), and a, by now, well-established epidemiological transmission-dynamic model framework (Davies, Klepac et al 2020) using Pakistan-specific 5-year age-group contact matrices on four types of contact rates, including at home, at work, at school, and at other locations (Prem, Cook & Jit 2017), to characterize an uncontrolled spread of disease. Our simulation results indicate that an uncontrolled C19 epidemic, by itself, would have led to a 0.12% reduction in Pakistani GDP (-721mn USD), and a total of 0.65mn critically ill and 1.52mn severely ill C19 patients during 2020-21, while 405,000 Pakistani citizens would have lost their lives. Since the majority of case fatalities and symptomatic cases, respectively 345,000 and 35.9mn, would have occurred in 2020, the case fatality and confirmed case numbers, observed by 31. December 2020 represents an outcome which is far better than the alternative. Case fatalities by 31. December 2020 could possibly have been somewhat improved either via a more prolonged one-off 10 week forced lockdown (66% reduction) or a 1-month forced lockdown/2-months opening intermittent lockdown strategy (33% reduction), but both sets of strategies would have carried significant GDP costs in the order of 2.2%-6.2% of real GDP.


Sujets)
COVID-19 , Infections à coronavirus , Insuffisance respiratoire , Ataxie
2.
arxiv; 2023.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2306.11003v1

Résumé

The onset of the COVID-19 pandemic drove a widespread, often uncoordinated effort by research groups to develop mathematical models of SARS-CoV-2 to study its spread and inform control efforts. The urgent demand for insight at the outset of the pandemic meant early models were typically either simple or repurposed from existing research agendas. Our group predominantly uses agent-based models (ABMs) to study fine-scale intervention scenarios. These high-resolution models are large, complex, require extensive empirical data, and are often more detailed than strictly necessary for answering qualitative questions like "Should we lockdown?" During the early stages of an extraordinary infectious disease crisis, particularly before clear empirical evidence is available, simpler models are more appropriate. As more detailed empirical evidence becomes available, however, and policy decisions become more nuanced and complex, fine-scale approaches like ours become more useful. In this manuscript, we discuss how our group navigated this transition as we modeled the pandemic. The role of modelers often included nearly real-time analysis, and the massive undertaking of adapting our tools quickly. We were often playing catch up with a firehose of evidence, while simultaneously struggling to do both academic research and real-time decision support, under conditions conducive to neither. By reflecting on our experiences of responding to the pandemic and what we learned from these challenges, we can better prepare for future demands.


Sujets)
COVID-19 , Maladies transmissibles
3.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.03.09.23285319

Résumé

We evaluate approaches to vaccine distribution using an agent-based model of human activity and COVID-19 transmission calibrated to detailed trends in cases, hospitalizations, deaths, seroprevalence, and vaccine breakthrough infections in Florida, USA. We compare the incremental effectiveness for four different distribution strategies at four different levels of vaccine availability, reflecting different income settings' historical COVID-19 vaccine distribution. Our analysis indicates that the best strategy to reduce severe outcomes is to actively target high disease-risk individuals. This was true in every scenario, although the advantage was greatest for the middle-income-country availability assumptions, and relatively modest compared to a simple mass vaccination approach for rapid, high levels of vaccine availability. Ring vaccination, while generally the most effective strategy for reducing infections, ultimately proved least effective at preventing deaths. We also consider using age group as a practical, surrogate measure for actual disease-risk targeting; this approach still outperforms both simple mass distribution and ring vaccination. We also find that the magnitude of strategy effectiveness depends on when assessment occurs (e.g., after delta vs. after omicron variants). However, these differences in absolute benefit for the strategies do not change the ranking of their performance at preventing severe outcomes across vaccine availability assumptions.


Sujets)
COVID-19 , Douleur paroxystique , Mort
4.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.15.21267858

Résumé

The Omicron B.1.1.529 SARS-CoV-2 variant was first detected in late November 2021 and has since spread to multiple countries worldwide. We model the potential consequences of the Omicron variant on SARS-CoV-2 transmission and health outcomes in England between December 2021 and April 2022, using a deterministic compartmental model fitted to epidemiological data from March 2020 onwards. Because of uncertainty around the characteristics of Omicron, we explore scenarios varying the extent of Omicron's immune escape and the effectiveness of COVID-19 booster vaccinations against Omicron, assuming the level of Omicron's transmissibility relative to Delta to match the growth in observed S gene target failure data in England. We consider strategies for the re-introduction of control measures in response to projected surges in transmission, as well as scenarios varying the uptake and speed of COVID-19 booster vaccinations and the rate of Omicron's introduction into the population. These results suggest that Omicron has the potential to cause substantial surges in cases, hospital admissions and deaths in populations with high levels of immunity, including England. The reintroduction of additional non-pharmaceutical interventions may be required to prevent hospital admissions exceeding the levels seen in England during the previous peak in winter 2020-2021.


Sujets)
COVID-19
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.07.09.21260272

Résumé

BackgroundCountries in the World Health Organization (WHO) European Region differ in terms of the COVID-19 vaccine roll-out speed. We evaluated the health and economic impact of different age-based vaccine prioritisation strategies across this demographically and socio-economically diverse region. MethodsWe fitted country-specific age-stratified compartmental transmission models to reported COVID-19 mortality in the WHO European Region to inform the immunity level before vaccine roll-out. Building upon broad recommendations from the WHO Strategic Advisory Group of Experts on Immunisation (SAGE), we examined four strategies that prioritise: all adults (V+), younger (20-59 year-olds) followed by older adults (60+) (V20), older followed by younger adults (V60), and the oldest adults (75+) (V75) followed by incremental expansion to successively younger five-year age groups. We explored four roll-out scenarios based on projections or recent observations (R1-4) - the slowest scenario (R1) covers 30% of the total population by December 2022 and the fastest (R4) 80% by December 2021. Five decision-making metrics were summarised over 2021-22: mortality, morbidity, and losses in comorbidity-adjusted life expectancy (cLE), comorbidity- and quality-adjusted life years (cQALY), and the value of human capital (HC). Six sets of infection-blocking and disease-reducing vaccine efficacies were considered. FindingsThe optimal age-based vaccine prioritisation strategies were sensitive to country characteristics, decision-making metrics and roll-out speeds. Overall, V60 consistently performed better than or comparably to V75. There were greater benefits in prioritising older adults when roll-out is slow and when VE is low. Under faster roll-out, V+ was the most desirable option. InterpretationA prioritisation strategy involving more age-based stages (V75) does not necessarily lead to better health and economic outcomes than targeting broad age groups (V60). Countries expecting a slow vaccine roll-out may particularly benefit from prioritising older adults. FundingWorld Health Organization, Bill and Melinda Gates Foundation, the Medical Research Council (United Kingdom), the National Institute of Health Research (United Kingdom), the European Commission, the Foreign, Commonwealth and Development Office (United Kingdom), Wellcome Trust Research in ContextO_ST_ABSEvidence before this studyC_ST_ABSWe searched PubMed and medRxiv for articles published in English from inception to 9 Jun 2021, with the search terms: ("COVID-19" OR "SARS-CoV-2") AND ("priorit*) AND ("model*") AND ("vaccin*") and identified 66 studies on vaccine prioritization strategies. Of the 25 studies that compared two or more age-based prioritisation strategies, 12 found that targeting younger adults minimised infections while targeting older adults minimised mortality; an additional handful of studies found similar outcomes between different age-based prioritisation strategies where large outbreaks had already occurred. However, only two studies have explored age-based vaccine prioritisation using models calibrated to observed outbreaks in more than one country, and no study has explored the effectiveness of vaccine prioritisation strategies across settings with different population structures, contact patterns, and outbreak history. Added-value of this studyWe evaluated various age-based vaccine prioritisation strategies for 38 countries in the WHO European Region using various health and economic outcomes for decision-making, by parameterising models using observed outbreak history, known epidemiologic and vaccine characteristics, and a range of realistic vaccine roll-out scenarios. We showed that while targeting older adults was generally advantageous, broadly targeting everyone above 60 years might perform better than or comparably to a more detailed strategy that targeted the oldest age group above 75 years followed by those in the next younger five-year age band. Rapid vaccine roll-out has only been observed in a small number of countries. If vaccine coverage can reach 80% by the end of 2021, prioritising older adults may not be optimal in terms of health and economic impact. Lower vaccine efficacy was associated with greater relative benefits only under relatively slow roll-out scenarios considered. Implication of all the available evidenceCOVID-19 vaccine prioritization strategies that require more precise targeting of individuals of a specific and narrow age range may not necessarily lead to better outcomes compared to strategies that prioritise populations across broader age ranges. In the WHO European Region, prioritising all adults equally or younger adults first will only optimise health and economic impact when roll-out is rapid, which may raise between-country equity issues given the global demand for COVID-19 vaccines.


Sujets)
COVID-19
6.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.24.20248822

Résumé

A novel SARS-CoV-2 variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in November 2020 and is rapidly spreading towards fixation. Using a variety of statistical and dynamic modelling approaches, we estimate that this variant has a 43-90% (range of 95% credible intervals 38-130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine roll-out, COVID-19 hospitalisations and deaths across England in 2021 will exceed those in 2020. Concerningly, VOC 202012/01 has spread globally and exhibits a similar transmission increase (59-74%) in Denmark, Switzerland, and the United States.


Sujets)
COVID-19
7.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.08.21.20167965

Résumé

Background School closures are a well-established non-pharmaceutical intervention in the event of infectious disease outbreaks, and have been implemented in many countries across the world, including the UK, to slow down the spread of SARS-CoV-2. As governments begin to relax restrictions on public life there is a need to understand the potential impact that reopening schools may have on transmission. Methods We used data provided by the UK Department for Education to construct a network of English schools, connected through pairs of pupils resident at the same address. We used the network to evaluate the potential for transmission between schools, and for long range propagation across the network, under different reopening scenarios. Results Amongst the options evaluated we found that reopening only Reception, Year 1 and Year 6 (4-6 and 10-11 year olds) resulted in the lowest risk of transmission between schools, with outbreaks within a single school unlikely to result in outbreaks in adjacent schools in the network. The additional reopening of Years 10 and 12 (14-15 and 16-17 year olds) resulted in an increase in the risk of transmission between schools comparable to reopening all primary school years (4-11 year olds). However, the majority of schools presented low risk of initiating widespread transmission through the school system. Reopening all secondary school years (11-18 year olds) resulted in large potential outbreak clusters putting up to 50% of households connected to schools at risk of infection if sustained transmission within schools was possible. Conclusions Reopening secondary school years is likely to have a greater impact on community transmission than reopening primary schools in England. Keeping transmission within schools limited is essential for reducing the risk of large outbreaks amongst school-aged children and their household members.

8.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.07.24.20161281

Résumé

To mitigate SARS-CoV-2 transmission risks from international travellers, many countries currently use a combination of up to 14 days of self-quarantine on arrival and testing for active infection. We used a simulation model of air travellers arriving to the UK from the EU or the USA and the timing of their stages of infection to evaluate the ability of these strategies to reduce the risk of seeding community transmission. We find that a quarantine period of 8 days on arrival with a PCR test on day 7 (with a 1-day delay for test results) can reduce the number of infectious arrivals released into the community by a median 94% compared to a no quarantine, no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median 99% reduction). Shorter quarantine periods still can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (the mean incubation period) in quarantine and have at least one negative test before release are highly effective (e.g. a test on day 5 with release on day 6 results in a median 88% reduction in transmission potential). Without intervention, the current high prevalence in the US (40 per 10,000) results in a higher expected number of infectious arrivals per week (up to 23) compared to the EU (up to 12), despite an estimated 8 times lower volume of travel in July 2020. Requiring a 14-day quarantine period likely results in less than 1 infectious traveller each entering the UK per week from the EU and the USA (97.5th percentile). We also find that on arrival the transmission risk is highest from pre-symptomatic travellers; quarantine policies will shift this risk increasingly towards asymptomatic infections if eventually-symptomatic individuals self-isolate after the onset of symptoms. As passenger numbers recover, strategies to reduce the risk of re-introduction should be evaluated in the context of domestic SARS-CoV-2 incidence, preparedness to manage new outbreaks, and the economic and psychological impacts of quarantine.

9.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.07.07.20148460

Résumé

BackgroundAsymptomatic or subclinical SARS-CoV-2 infections are often unreported, which means that confirmed case counts may not accurately reflect underlying epidemic dynamics. Understanding the level of ascertainment (the ratio of confirmed symptomatic cases to the true number of symptomatic individuals) and undetected epidemic progression is crucial to informing COVID-19 response planning, including the introduction and relaxation of control measures. Estimating case ascertainment over time allows for accurate estimates of specific outcomes such as seroprevalence, which is essential for planning control measures. MethodsUsing reported data on COVID-19 cases and fatalities globally, we estimated the proportion of symptomatic cases (i.e. any person with any of fever >= 37.5{degrees}C, cough, shortness of breath, sudden onset of anosmia, ageusia or dysgeusia illness) that were reported in 210 countries and territories, given those countries had experienced more than ten deaths. We used published estimates of the case fatality ratio (CFR) as an assumed baseline. We then calculated the ratio of this baseline CFR to an estimated local delay-adjusted CFR to estimate the level of under-ascertainment in a particular location. We then fit a Bayesian Gaussian process model to estimate the temporal pattern of under-ascertainment. ResultsWe estimate that, during March 2020, the median percentage of symptomatic cases detected across the 84 countries which experienced more than ten deaths ranged from 2.38% (Bangladesh) to 99.6% (Chile). Across the ten countries with the highest number of total confirmed cases as of 6th July 2020, we estimated that the peak number of symptomatic cases ranged from 1.4 times (Chile) to 17.8 times (France) larger than reported. Comparing our model with national and regional seroprevalence data where available, we find that our estimates are consistent with observed values. Finally, we estimated seroprevalence for each country. Despite low case detection in some countries, our results that adjust for this still suggest that all countries have had only a small fraction of their populations infected as of July 2020. ConclusionsWe found substantial under-ascertainment of symptomatic cases, particularly at the peak of the first wave of the SARS-CoV-2 pandemic, in many countries. Reported case counts will therefore likely underestimate the rate of outbreak growth initially and underestimate the decline in the later stages of an epidemic. Although there was considerable under-reporting in many locations, our estimates were consistent with emerging serological data, suggesting that the proportion of each countrys population infected with SARS-CoV-2 worldwide is generally low. FundingWellcome Trust, Bill & Melinda Gates Foundation, DFID, NIHR, GCRF, ARC.


Sujets)
COVID-19
10.
arxiv; 2020.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2006.13012v4

Résumé

Combinations of intense non-pharmaceutical interventions ('lockdowns') were introduced in countries worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement lockdown exit strategies that allow restrictions to be relaxed while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, will allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. The roadmap requires a global collaborative effort from the scientific community and policy-makers, and is made up of three parts: i) improve estimation of key epidemiological parameters; ii) understand sources of heterogeneity in populations; iii) focus on requirements for data collection, particularly in Low-to-Middle-Income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health.


Sujets)
COVID-19
11.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.04.30.20084780

Résumé

Background The COVID-19 pandemic has placed an unprecedented strain on health systems, with rapidly increasing demand for healthcare in hospitals and intensive care units (ICUs) worldwide. As the pandemic escalates, determining the resulting needs for healthcare resources (beds, staff, equipment) has become a key priority for many countries. Projecting future demand requires estimates of how long patients with COVID-19 need different levels of hospital care. Methods We performed a systematic review to gather data on length of stay (LoS) of patients with COVID-19 in hospital and in ICU. We subsequently developed a method to generate LoS distributions which combines summary statistics reported in multiple studies, accounting for differences in sample sizes. Applying this approach we provide distributions for general hospital and ICU LoS from studies in China and elsewhere, for use by the community. Results We identified 52 studies, the majority from China (46/52). Median hospital LoS ranged from 4 to 53 days within China, and 4 to 21 days outside of China, across 45 studies. ICU LoS was reported by eight studies - four each within and outside China - with median values ranging from 6 to 12 and 4 to 19 days, respectively. Our summary distributions have a median hospital LoS of 14 (IQR: 10-19) days for China, compared with 5 (IQR: 3-9) days outside of China. For ICU, the summary distributions are more similar (median (IQR) of 8 (5-13) days for China and 7 (4-11) days outside of China). There was a visible difference by discharge status, with patients who were discharged alive having longer LoS than those who died during their admission, but no trend associated with study date. Conclusion Patients with COVID-19 in China appeared to remain in hospital for longer than elsewhere. This may be explained by differences in criteria for admission and discharge between countries, and different timing within the pandemic. In the absence of local data, the combined summary LoS distributions provided here can be used to model bed demands for contingency planning and then updated, with the novel method presented here, as more studies with aggregated statistics emerge outside China.


Sujets)
COVID-19
12.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.04.16.20067504

Résumé

Background: To contain the spread of COVID-19, a cordon sanitaire was put in place in Wuhan prior to the Lunar New Year, on 23 January 2020, restricting travel to other parts of China. We assess the efficacy of the cordon sanitaire to delay the introduction and onset of local transmission of COVID-19 in other major cities in mainland China. Methods: We estimated the number of infected travellers from Wuhan to other major cities in mainland China from November 2019 to March 2020 using previously estimated COVID-19 prevalence in Wuhan and publicly available mobility data. We focused on Beijing, Chongqing, Hangzhou, and Shenzhen as four representative major cities to identify the potential independent contribution of the cordon sanitaire and holiday travel. To do this, we simulated outbreaks generated by infected arrivals in these destination cities using stochastic branching processes. We also modelled the effect of the cordon sanitaire in combination with reduced transmissibility scenarios representing the effect of local non-pharmaceutical interventions. Findings: In the four cities, given the potentially high prevalence of COVID-19 in Wuhan between Dec 2019 and early Jan 2020, local transmission may have been seeded as early as 2 - 8 January 2020. By the time the cordon sanitaire was imposed, simulated case counts were likely in the hundreds. The cordon sanitaire alone did not substantially affect the epidemic progression in these cities, although it may have had some effect in smaller cities. Interpretation: Our results indicate that the cordon sanitaire may not have prevented COVID-19 spread in major Chinese cities; local non-pharmaceutical interventions were likely more important for this.


Sujets)
COVID-19
13.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.02.12.20022426

Résumé

Background: We evaluated if interventions aimed at air travellers can delay local SARS-CoV-2 community transmission in a previously unaffected country. Methods: We simulated infected air travellers arriving into countries with no sustained SARS-CoV-2 transmission or other introduction routes from affected regions. We assessed the effectiveness of syndromic screening at departure and/or arrival & traveller sensitisation to the COVID-2019-like symptoms with the aim to trigger rapid self-isolation and reporting on symptom onset to enable contact tracing. We assumed that syndromic screening would reduce the number of infected arrivals and that traveller sensitisation reduces the average number of secondary cases. We use stochastic simulations to account for uncertainty in both arrival and secondary infections rates, and present sensitivity analyses on arrival rates of infected travellers and the effectiveness of traveller sensitisation. We report the median expected delay achievable in each scenario and an inner 50% interval. Results: Under baseline assumptions, introducing exit and entry screening in combination with traveller sensitisation can delay a local SARS-CoV-2 outbreak by 8 days (50% interval: 3-14 days) when the rate of importation is 1 infected traveller per week at time of introduction. The additional benefit of entry screening is small if exit screening is effective: the combination of only exit screening and traveller sensitisation can delay an outbreak by 7 days (50% interval: 2-13 days). In the absence of screening, with less effective sensitisation, or a higher rate of importation, these delays shrink rapidly to less than 4 days. Conclusion: Syndromic screening and traveller sensitisation in combination may have marginally delayed SARS-CoV-2 outbreaks in unaffected countries.


Sujets)
Infections
SÉLECTION CITATIONS
Détails de la recherche